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We introduce an extension of the M/M/1 queueing process with a spatial structure and excluded-volume
effect. The rule of particle hopping is the same as for the totally asymmetric simple exclusion process
�TASEP�. A stationary-state solution is constructed in a slightly arranged matrix product form of the open
TASEP. We obtain the critical line that separates the parameter space depending on whether the model has the
stationary state. We calculate the average length of the model and the number of particles and show the
monotonicity of the probability of the length in the stationary state. We also consider a generalization of the
model with backward hopping of particles allowed and an alternate joined system of the M/M/1 queueing
process and the open TASEP.
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I. INTRODUCTION

The queueing process is a typical example of a Markov
process �1�. One of the simplest queueing processes is of the
so-called M/M/1 type, where the arrival of customers and
their service obey the Poisson point process. This model’s
stationary state is the geometric distribution that varies with
the ratio of the arrival rate to the service rate. The M/M/1
queueing process has no spatial structure and particles do not
interact with each other.

On the other hand, the asymmetric simple exclusion pro-
cess �ASEP� on a one dimensional lattice is one of the sim-
plest Markov processes with interacting particles �2�. In the
ASEP, each site can be occupied by at most one particle and
each particle can hop to a nearest-neighbor site if it is empty.
The ASEP admits exact analyses of nonequilibrium proper-
ties by the matrix product ansatz and the Bethe ansatz �3�.
The matrix product form of the stationary state was first
found in the totally ASEP with open boundaries �open
TASEP�, where each particle enters at the left end, hops for-
ward �rightward� in the bulk, and exits at the right end �4�.
Similar results have been obtained in various generalized
ASEPs and similar models in one dimension with both open
and periodic boundary conditions �5�.

In this paper, we introduce an extension of the M/M/1
queueing process on a semi-infinite chain with the excluded-
volume effect �hard-core repulsion� as in the open TASEP.
Each particle enters the chain at the left site next to the
leftmost occupied site, hops, and exits following the same
rule as for the open TASEP. A stationary-state solution is
given by a slightly arranged matrix product form of the open
TASEP. The normalization constant is given by the generat-
ing function of that of the open TASEP.

This paper is organized as follows. In Sec. II, we briefly
review the M/M/1 queueing process and the open TASEP. In
Sec. III, we define the model. In Sec. IV, we find a stationary
state of the model. This will be constructed in a slightly
modified matrix product form of the open TASEP. We obtain
the critical line which separates the parameter space into the

regions with and without the stationary state. The critical line
will be written in terms of the stationary current of the open
TASEP. We also calculate the average length of the system
and the average number of particles on the assumption of the
uniqueness of the stationary state. We also show the mono-
tonicity of the probability of the length �i.e., the position of
the leftmost particle�. In Sec. V, we generalize the model by
allowing particles to hop backward. It is fair to say that al-
most every calculation in Secs. IV and V will be performed
by using known formulas in studies of the open TASEP and
the open partially ASEP �PASEP�. In Sec. VI, we introduce
an alternate joined system of the queueing process and the
open TASEP. Section VII is devoted to the conclusion of this
paper.

II. REVIEW OF THE M/M/1 QUEUEING PROCESS
AND THE OPEN TASEP

A. M/M/1 queueing process

Let us consider the simplest queueing process, i.e., the
M/M/1 queueing process, as in Fig. 1, where N denotes the
number of particles. Particles enter the system with rate �
and exit the system with rate �. �Customers arrive at the
queue with rate � and receive service with rate � at one
server.� The M/M/1 queueing process does not have spatial
structure and is characterized only by the number of par-
ticles.

The system is encoded by a Markov process on the state
space Z�0 and governed by the following master equation for
the probability P�N� that the number of particles is N:

d

dt
P�0� = �P�1� − �P�0� , �1�

*airta@math.kyushu-u.ac.jp FIG. 1. M/M/1 queueing process.
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d

dt
P�N� = �P�N − 1� + �P�N + 1� − �� + ��P�N� , �2�

for N�N. The M/M/1 queueing process is equivalent to a
continuous-time random walk on Z�0 whose jump rates to
right and left directions are � and �, respectively, with re-
flection at 0.

A unique stationary-state solution is easily obtained as

P�N� =
1

Z
��

�
�N

, Z = �
N=0

� ��

�
�N

. �3�

In other words, the equation

0 = �P�1� − �P�0� , �4�

0 = �P�N − 1� + �P�N + 1� − �� + ��P�N� �N � N�

�5�

with �N=0
� P�N�=1 imposed has the unique solution �3�. We

should note, however, that the normalization constant Z does
not always converge; in other words, the stationary state does
not always exist. If ���, Z actually converges to � / ��
−�� and the system has the stationary state. �Otherwise, Z
diverges and the system has no stationary state.� Thus the
critical line is �=�. We can see the uniqueness of the sta-
tionary state recursively as follows:

�i� We can set P�0�= 1
Z .

�ii� From Eq. �4�, we have P�1�= 1
Z

�
� .

�iii� The relation �5� implies that if we suppose

P�N − 1� =
1

Z
��

�
�N−1

, P�N� =
1

Z
��

�
�N

�6�

for N�N, then

P�N + 1� =
1

Z
��

�
�N+1

. �7�

The average number of particles can be easily calculated
as

�N	M/M/1 = �
N=0

�

NP�N� =
�

� − �
. �8�

In the stationary state, the current of particles through the
server is nothing but the arrival rate �,

��
N=1

�

P�N� = � . �9�

B. TASEP with open boundaries

Let us consider an interacting particle system, the totally
asymmetric simple exclusion process on the L-site chain
with open boundaries �open TASEP�, see Fig. 2. Each site
can be occupied by at most one particle. Each particle enters
the chain at the left end with rate � if it is empty, hops to its
right nearest-neighbor site in the bulk with rate p if it is
empty, and exits at the right end with rate �. Let us write

� j =0 if the jth site is empty and � j =1 if it is occupied by a
particle. The system is formulated by a Markov process on
the state space 
0,1�L. The master equation on the probabil-
ity P��1 , . . . ,�L� of finding a configuration ��1 , . . . ,�L� is as
follows:

d

dt
P��1, . . . ,�L� = ��2�1 − 1�P�0,�2, . . . ,�L�

+ p�
j=1

L−1

�� j+1 − � j�P��1, . . . ,1
j

, 0
j+1

, . . . ,�L�

+ ��1 − 2�L�P��1, . . . �L−1,1� . �10�

In contrast to the M/M/1 queueing process, the state space
of the open TASEP is finite and thus it always has a station-
ary state. Moreover the open TASEP is irreducible; therefore
the stationary state is unique. Derrida et al. found the
stationary-state solution to the open TASEP in the following
simple form �4�:

P��1, . . . ,�L� =
1

ZL��,�,p��W� �
p ��X�1

¯ X�L
�V� �

p �	 ,

�11�

where X0=E and X1=D are matrices, �W�u�� and �V�v�	 are
row and column vectors, respectively, and ZL�� ,� , p� is the
normalization constant

ZL��,�,p� = �W��
p ���D + E�L�V��

p �	 . �12�

The matrices and the vectors should satisfy the following
relation so that the matrix product form �11� actually gives
the stationary-state probability:

DE = D + E ,

�W�u��E =
1

u
�W�u�� ,

�V�v�	D =
1

v
�V�v�	 . �13�

Set �W�u� �V�v�	=1 without loss of generality. The following
representation satisfies the algebra �13�:

D =
1 1 0 0

0 1 1 0

0 0 1 1

� �

�, E =
1 0 0

1 1 0

0 1 1

� �

� ,

�14�

FIG. 2. TASEP with open boundaries.
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�W�w�� = ��1,a,a2, . . .�, �V�v�	 = �
1

b

b2

]

� , �15�

where �=��w+v−1� /wv ,a= �1−w� /w and b= �1−v� /v.
Note that, in the original paper �4�, the bulk hopping rate p
was set to be 1 and other representations of the matrices and
vectors were found. For simplicity in what follows, however,
we choose the representation �14� and �15� so that only the
vectors depend on � ,� and p. By using the algebraic relation
�13�, we can calculate the normalization constant as follows
�4�:

ZL��,�,p� = �
j=0

L
j�2L − j − 1�!
L ! �L − j�!

� p

�
� j+1

− � p

�
� j+1

p

�
−

p

�

. �16�

The stationary current, for example, can be written in
terms of the normalization constant ZL�� ,� , p� as

JL��,�,p� = p
ZL−1��,�,p�
ZL��,�,p�

. �17�

In the limit L→�, the phase diagram of the current
J��� ,� , p� consists of three regions which are called the
maximal current �MC� phase, the low-density �LD� phase,
and the high-density �HD� phase �see Fig. 3�,

J���,�,p� =�
p

4
, �,� �

p

2
�MC�

��1 − �/p� , � � min��,
p

2
� �LD�

��1 − �/p� , � � min��,
p

2
� �HD� .

�
�18�

The line �=��
p
2 is called the coexistence line, where a

shock between a low-density segment and a high-density

segment exhibits a random walk �6�: J��� ,� , p�=��1
−� / p�.

Note that no particle can enter the chain if the leftmost
site is occupied by another particle and thus the stationary
current is not equal to �. This means that the open TASEP is
a “call-loss system.” Recall that the stationary current of the
M/M/1 queueing process, which is not a call-loss system, is
�.

III. MODEL

Let us introduce a new model which is an extended
M/M/1 queueing process on a semi-infinite chain with the
excluded-volume effect as in the TASEP. Figure 4 shows the
model, where each site is numbered from right to left and L
denotes the leftmost occupied site. Each site can be occupied
by at most one particle. Each particle hops to its right
nearest-neighbor site with rate p in the bulk if it is empty and
exits with rate � at the right end. The rules of the bulk
hopping and the exit are the same as for the open TASEP.
However, the rule for the entering is different. Each particle
enters the chain at the immediately left of the leftmost occu-
pied site �or at site 1 if there is no particle on the chain�. One
can put this model into the TASEP in the semi-infinite chain
with a new boundary condition.

The system is encoded by a Markov process on the state
space

S ª � � �
L�N

�
1� 	 
0,1�L−1�

= 
� ,�1�,�1,0�,�1,1�,�1,0,0�,

�1,0,1�,�1,1,0�,�1,1,1�,�1,0,0,0�, . . .� . �19�

The leftmost particle of each element of S except � can
always be specified. Configurations such as �. . . ,1 ,1 ,1 ,1�
and �. . . ,1 ,0 ,1 ,0 ,1 ,0� do not appear in S.

Let P�1,�L−1 , . . . ,�1� be the probability of finding a con-
figuration �1,�L−1 , . . . ,�1� with the leftmost particle at Lth
site and P�� � be the probability of finding no particle on the
chain. The master equation governing the model is as fol-
lows:

d

dt
P� � � = �P�1� − �P� � � , �20�

d

dt
P�1� = �P� � � + pP�1,0� − �� + ��P�1� , �21�

FIG. 3. Phase diagram of the open TASEP.

FIG. 4. Queueing process with the excluded-volume effect.
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d

dt
P�1,�L−1, . . . ,�1�

= pP�1,0,�L−1, . . . ,�1� + ��L−1P�1,�L−2, . . . ,�1�

− �P�1,�L−1, . . . ,�1� + p��L−1 − 1�P�1,0,�L−2 . . . ,�1�

+ p�
j=1

L−2

�� j − � j+1�P�1,�L−1, . . . , 1
j+1

,0
j

, . . . ,�1�

+ ��1 − 2�1�P�1,�L−1, . . . �2,1� . �22�

For example,

d

dt
P�1,1,0,1,0,1�

= �P�1,0,1,0,1� + pP�1,0,1,0,1,0,1�

+ pP�1,1,1,0,0,1� + pP�1,1,0,1,1,0�

− �� + 2p + ��P�1,1,0,1,0,1� , �23�

d

dt
P�1,0,0,1,1,0,1,0�

= pP�1,0,0,0,1,1,0,1,0� + pP�1,0,1,0,1,0,1,0�

+ pP�1,0,0,1,1,1,0,0� + �P�1,0,0,1,1,0,1,1�

− �� + 3p�P�1,0,0,1,1,0,1,0� . �24�

We write the right-hand side of the master equation as
�HP���1 , . . . ,�L� with the generator matrix H acting on the
probability vector P= �P�� � , P�1� , P�1,0� , . . .�T. Note that
H is an infinite-dimensional matrix.

IV. STATIONARY STATE

A. Matrix product form

The problem is how to find the solution to HP=0. We can
see that a slightly arranged matrix product form

P� � � =
1

Z��,�,p�
,

P�1� =
1

Z��,�,p�
�

�
=

1

Z��,�,p�
�

�
�W�1��V� �

p �	 ,

P��L = 1, . . . ,�1� =
1

Z��,�,p�
�L

�pL−1 �W�1��X�L−1
¯ X�1

�V� �
p �	

�for L � 2� �25�

gives a stationary-state solution. �This idea is applicable to a
discrete-time version of the model �7�.� Here Z�� ,� , p� is
the normalization constant which can be written as a special
case of the generating function of the normalization constant
of the open TASEP,

Z��,�,p� = �
L=0

�
�L

�pL−1 �W�1���D + E�L−1�V� �
p �	

= �
L=0

�
�L

�pL−1ZL−1�p,�,p� �26�

with Z−1�p ,� , p�=� / p. See the Appendix for some station-
ary probabilities calculated by using the algebraic relation
�13�. That the form �25� gives a stationary-state solution �i.e.,
HP=0� can be proved by a similar canceling to that for the
open TASEP. Let us use a short-hand notation

�W�1�� ¯ ���
p �	 = � ¯ 	 . �27�

Substituting the form �25� into HP�1,�L−1 , . . . ,�1� and mul-
tiplying it by �pL−1

�L Z�� ,� , p�, we find

�pL−1

�L Z��,�,p��HP��1,�L−1 . . . ,�1� �28�

=p
�

p
�EX�L−1

¯ X�1
	

+ ��L−1
p

�
�X�L−2

¯ X�1
	 − ��X�L−1

¯ X�1
	

+ p��L−1 − 1��EX�L−2
¯ X�1

	

+ p�
j=1

L−2

�� j − � j+1��X�L−1
¯ D

j+1

E
j

¯ X�1
	

+ ��1 − 2�1��X�L−1
¯ X�2

D	 �29�

=p�− �1 − 2�L−1��X�L−2
¯ X�1

	

+ �
j=1

L−2

�1 − 2� j+1��X�L−1
¯ X�j+2

X�j
¯ X�1

	

− �
j=1

L−2

�1 − 2� j��X�L−1
¯ X�j+1

X�j−1
¯ X�1

	

+ �1 − 2�1��X�L−1
¯ X�2

	� �30�

=0 �31�

In the above calculation, we applied the algebraic relation
�13�,

�¯DE¯	 = �¯D¯	 + �¯E¯	 , �32�

�E¯	 = � ¯ 	, ��¯D	 = p� ¯ 	 . �33�

In our argument throughout this section, we assume that
Eq. �25� is a unique stationary state of the model if
Z�� ,� , p� converges and there is no stationary state if
Z�� ,� , p� diverges. Recall that the stationary states of the
usual M/M/1 queueing process and the open TASEP are
unique.
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The following function will be useful in the next section:

Z�p
,�,p;�� = 1 + �
L=1

�
p

�

L��W�1����D + E�L−1�V� �

p �	

�34�

with a fugacity �. This can be regarded as a special case of
the generating function of the normalization constant of the
TASEP with a single defect particle �see section 4.3 in �5��.
The case where 
=� / p and �=1 corresponds to the normal-
ization constant

Z��,�,p� = Z�p�/p,�,p;1� . �35�

B. Critical line

The asymptotic behavior of ZL�p ,� , p� as L→� is as fol-
lows �4�:

ZL�p,�,p� � �
4L

��L3� 2�

2� − p
�2

, � 
p

2

2 · 4L

��L
, � =

p

2

1 − 2�/p
�1 − �/p�2� 1

�1 − �/p��/p�
L

, � �
p

2
.
�
�36�

Thanks to this asymptotic form, we see that if the condition

� �
p
4 �� 

p
2�

� � ��1 − �/p� �� �
p
2� �37�

is satisfied, then Z�� ,� , p� converges. In other words, the
critical line is given by

� = �c = �
p

4
, �� 

p

2
�

��1 − �/p� , �� �
p

2
� ,� �38�

see Fig. 5. Note that the area �37�, where the normalization
constant Z�� ,� , p� converges, is embedded in that of the
usual M/M/1 queueing process �����. We remark that the
critical line can be written in terms of the stationary current
�18� of the open TASEP with �= p,

�c = J��p,�,p� . �39�

Turning to the stationary current through the right end of
the chain, we see that this must be the arrival rate �, because
the model is not a call-loss system. In fact, one can see

�P�1� + ��
L=2

�

�
�j=0,1

P�1,�L−1, . . . ,�2,1�

=
�

Z��,�,p�
+

1

Z��,�,p�

	�
L=2

�
�L

pL−1 �W�1���D + E�L−2D�V� �
p �	

=
�

Z��,�,p��1 + �
L=2

�
�L−1

�pL−2

	�W�1���D + E�L−2�V� �
p �	� = � . �40�

C. Average values

In this subsection and the next subsection, we assume that
the condition �37� is satisfied. According to the formula
�4.27� in �5� we find

Z�p
,�,p;�� = 1 +
p
�

��1 − 
��� − 1�2��1 − ���1 − ���
,

�41�

where

� = 1 + ���p/� − 1� , �42�

� =
1

2
�1 −�1 − �1 + ���2


1 − �1 − ���2

� . �43�

In particular,

Z��,�,p� =
2�

2� − p�1 − r�
�44�

with r=�1−4� / p. The average length �L	 �the average po-
sition of the leftmost particle� and the average number �N	 of
particles on the chain can be calculated by differentiating
Z�p
 ,� , p ;�� as

�L	 = 

�

�

ln Z�p
,�,p;1��
=�/p =

2�/p
r�− 1 + r + 2�/p�

,

�45�

FIG. 5. Critical line �38�.
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�N	 =
�

��
ln Z��,�,p;����=1 =

2��1 + r − �3 + r��/p�
r�1 + r���1 + r�� − 2��

.

�46�

By the excluded-volume effect, these values are greater than
the average number of particles in the usual M/M/1 queueing
process,

�L	  �N	  �N	M/M/1 =
�

� − �
. �47�

Actually, one can find

�N	 − �N	M/M/1 =
2�2��� − �� + r�� + ���

pr�1 + r����1 + r� − 2���� − ��
 0,

�48�

whereas the first inequality in Eq. �47� is true by definition.
�L	 and �N	 are expanded with respect to 1 / p as

�L	 �
�

� − �
+

�2�2� − ��
�� − ��2

1

p
+ O„�1/p�2

… , �49�

�N	 �
�

� − �
+

�2�

�� − ��2

1

p
+ O„�1/p�2

… �50�

and we can see a natural result that they approach �N	M/M/1 in
the usual-M/M/1-queuing-process limit p→�. Note that

�L	 = �, �N	 = � �51�

on the critical line �= p
4 and �

p
2 .

D. Monotonicity of the length

Let us consider the probability �L that the length is L �the
leftmost particle is at site L�,

�L =
1

Z��,�,p� �
�i=0,1

P�1,�L−1, . . . ,�1�

=
1

Z��,�,p�
p

�
��

p
�L

ZL−1�p,�,p� . �52�

For L=0, we set �0= P�� �.
Thanks to the asymptotic form �36� again, we can see that

�L decays as L→� as

�L �
1

Z��,�,p�
p

�

	�
1

��L3� 2�

2� − p
�2�4�

p
�L

, � 
p

2

2
��L

�4�

p
�L

, � =
p

2

1 − 2�/p
�1 − �/p�2� �

�1 − �/p���
L

, � �
p

2
.
� �53�

When L is finite, �L possesses the property of the mono-
tonicity with respect to L,

¯ � �2 � �1 � �0. �54�

The rightmost inequality �1��0 is clearly true. We devote
the rest of this subsection to the proof of �L+1��L for L
�1. Let us use short-hand notations

ZL ª ZL�p,�,p�, x ª
p

�
, �55�

and the following alternate expression which can be obtained
by transforming Eq. �16�:

ZL = �
j=0

L

aL,jx
j , �56�

where aL,j =
�j+1��2L−j�!
�L+1�!�L−j�! .

1. Case when ��p Õ2

Under the assumption ���c= p /x�1−1 /x�, we find that

�

p
ZL − ZL−1 �

1

x
�1 −

1

x
�ZL − ZL−1 = −

CL

x2 � 0, �57�

where CL= �2L�!
�L+1�!L! is the Catalan number. Thus, we have

�L+1��L.

2. Case when �p Õ2

The proof of the monotonicity for � p /2 �i.e., x�2�
will be somewhat more technical. Our goal is to show ZL

�4ZL−1, this implies that �
p ZL�

1
4ZL�ZL−1 and thus �L+1

��L.
Before proving this in the general L�1 case, we demon-

strate it for L=6,

Z6 = 132 + 132x + 90x2 + 48x3 + 20x4 + 6x5 + x6

� 132 + 132x + 90x2 + 48x3 + 20x4 + 8x5

� 132 + 132x + 90x2 + 48x3 + 28x4 + 4x5

� 132 + 132x + 90x2 + 64x3 + 20x4 + 4x5

� 132 + 132x + 106x2 + 56x3 + 20x4 + 4x5

� 168 + 168x + 112x2 + 56x3 + 20x4 + 4x5

= 4Z5, �58�

where we used x6�2x5, x5�2x4, etc.
Let us go back to the general L�1 case and introduce a

sequence 
bL,j�1�j�L−1 defined by the following recursion re-
lation:

bL,j = 2�bL,j+1 − 4aL−1,j+1� + aL,j �59�

with aL−1,L=bL,L+1=0. One can find that

bL,j =
�2L − j − 2�!

�L + 1� ! �L − j�!

	 �4jL2 − 2�j2 − 4j − 3�L − j�j + 1��j + 7�� . �60�

As long as bL,j 4aL−1,j,
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aL,j−1xj−1 + bL,jx
j = aL,j−1xj−1 + �bL,j − 4aL−1,j�xj + 4aL−1,jx

j

� aL,j−1xj−1 + 2�bL,j − 4aL−1,j�xj−1

+ 4aL−1,jx
j = bL,j−1xj−1 + 4aL−1,jx

j . �61�

Let k be an integer such that

bL,k � 4aL−1,k and bL,j  4aL−1,j�∀ j  k� . �62�

This is equivalent to

k�k + 3� � 2L � �k + 1��k + 4� �63�

and k is determined uniquely. For example, k=2 for L=6.
Using the inequality �61� repeatedly while jk, we get

ZL = aL,0 + ¯ + aL,L−2xL−2 + aL,L−1xL−1 + aL,LxL

� aL,0 + ¯ + aL,L−2xL−2 + bL,L−1xL−1

� aL,0 + ¯ + bL,L−2xL−2 + 4aL−1,L−1xL−1

� ¯

� �
j=0

k−1

aL,jx
j + bL,kx

k + �
j=k+1

L−1

4aL−1,jx
j . �64�

The coefficients 
aL,j�0�j�k−1 in the first summation of the
last line of Eq. �64� satisfy aL,j �4aL−1,j,

� aL,j − 4aL−1,j =
�j + 1��2L − j − 2� ! �j2 + 5j − 6L�

�L + 1� ! �L − j�!

�
�j + 1��2L − j − 2� ! �2j − 4L�

�L + 1� ! �L − j�!
� 0,

�65�

where we used j2+3j�k2+3k�2L �see Eq. �63��.
Finally, we achieve

ZL � �
j=0

k−1

4aL−1,jx
j + 4aL−1,kx

k + �
j=k+1

L−1

4aL−1,jx
j = 4ZL−1.

�66�

V. GENERALIZATION

In this section, we generalize the model by allowing par-
ticles to hop backward with rate pq�q0�, see Fig. 6. We
will construct a stationary state and derive the critical line,
arranging the matrix product form of the partially ASEP
�PASEP� with the open boundary condition as in Fig. 7.

The matrix product stationary state of the open PASEP is
as follows:

P��1, . . . ,�L� =
1

ZL��,�,p,q�
�W� �

p ��X�1
¯ X�L

�V� �
p �	 ,

�67�

where the matrices X0=Eq and X1=Dq, the row vector
�W�w�� and the column vector �V�v�	 satisfy

DqEq − qEqDq = Dq + Eq,

�W�w��Eq =
1

w
�W�w�� ,

Dq�V�v�	 =
1

v
�V�v�	 , �68�

and ZL�� ,� , p ,q� is the normalization constant,

ZL��,�,p,q� = �W��
p ���Dq + Eq�L�V��

p �	 . �69�

Some representations of the matrices and the vectors can be
found in �5,8,9�. The notation used in Eq. �68� was chosen
for convenience. However, we stress that, despite appear-
ances, we have found no representation such that the matri-
ces depend only on q and the vectors are independent of q.

For q�1, the normalization constant ZL�� ,� , p ,q� can be
written in the following integral form �8,9�:

ZL��,�,p,q�

=
�q,ab;q��

4�i
�

K

dz

z

�z2,z−2;q��

�az,a/z,bz,b/z;q��
�2 + z + z−1

1 − q
�L

,

�70�

where a= p�1−q�
� −1,b= p�1−q�

� −1 and �x1 , . . . ,xm ;q��

=�1�n�m�0�i���1−xnqi� is the q-shifted factorial. The con-
tour K encloses poles z=a ,qa ,q2a , . . . and z=b ,qb ,q2b , . . .,
and excludes z=1 /a ,q /a ,q2 /a , . . . and z=1 /b ,q /b ,q2 /b , . . ..
The asymptotic form of the normalizing constant of the open
PASEP in the limit L→� has been obtained by applying the
saddle-point method to the integral form �70� �8,9�,

FIG. 6. Queueing process with exclusive hopping to both
directions.

FIG. 7. PASEP with open boundaries.
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ZL��,�,p,q� �

⎩
⎪
⎨
⎪
⎧

4�ab;q���q;q��
3

���a,b;q��
2 L3/2� 4

1 − q
�L

�,� 
p�1 − q�

2

2
���b;q��L1/2� 4

1 − q
�L

� =
p�1 − q�

2
� �

2
���a;q��L1/2� 4

1 − q
�L

� =
p�1 − q�

2
� �

� 4

1 − q
�L

, � = � =
p�1 − q�

2

�a−2;q��

�b/a;q��
�2 + a + a−1

1 − q
�L

, � � min��,
p�1 − q�

2
�

�b−2;q��

�a/b;q��
�2 + b + b−1

1 − q
�L

, � � min��,
p�1 − q�

2
�

�a − 1��a−2;q��L

�a + 1��q;q��
�2 + a + a−1

1 − q
�L

, � = � �
p�1 − q�

2
. ⎭

⎪
⎬
⎪
⎫

�71�

The stationary current of the open PASEP can be written in
terms of the normalization constant as

JL��,�,p,q� = p
ZL−1��,�,p,q�
ZL��,�,p,q�

. �72�

Noting the asymptotic form �71�, we have

J���,�,p,q�

=�
p�1 − q�

4
� , � �

p�1 − q�
2

��1 −
�

p�1 − q�� , � � min��,
p�1 − q�

2
�

��1 −
�

p�1 − q�� , � � min��,
p�1 − q�

2
� .
�

�73�

In the symmetric case q=1, the normalization constant
has the following simple form �10�:

ZL��,�,p,q� = �� + 1��� + 2� ¯ �� + L� , �74�

where �= p
� + p

� −1.
In the reverse-bias case q1, the normalization constant

behaves in the limit L→� as

ZL��,�,p,q� � AqL2/4� �ab

1 − q
�L

, �75�

where A is a constant independent of L �9�.
Let us go back to the generalized queueing process with

forward and backward hopping �Fig. 6�, which is governed
by the following master equation:

d

dt
P� � � = �P�1� − �P� � � , �76�

d

dt
P�1� = �P� � � + pP�1,0� − �� + � + pq�P�1� , �77�

d

dt
P�1,�L−1, . . . ,�1�

= pP�1,0,�L−1, . . . ,�1� − pqP�1,�L−1, . . . ,�1�

+ ��L−1P�1,�L−2, . . . ,�1� − �P�1,�L−1, . . . ,�1�

+ p��L−1 − 1�P�1,0,�L−2 . . . ,�1�

+ pq�1 − �L−1�P�1,�L−2 . . . ,�1�

+ p�
j=1

L−2

�� j − � j+1�P�1,�L−1, . . . , 1
j+1

,0
j

, . . . ,�1�

+ pq�
j=1

L−2

�� j+1 − � j�P�1,�L−1, . . . , 0
j+1

,1
j

, . . . ,�1�

+ ��1 − 2�1�P�1,�L−1, . . . �2,1� . �78�

A stationary-state solution to this equation is given by the
following form, which can be proved in the same way as
Eqs. �28�–�31�:

P� � � =
1

Z��,�,p,q�
, P�1� =

1

Z��,�,p,q�
�

�
,

P�1,�L−1 . . . ,�1� =
1

Z��,�,p,q�
�L

�pL−1

	�W� �
�+pq ��X�L−1

¯ X�1
�V� �

p �	 , �79�

where Z�� ,� , p ,q� is the normalization constant
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Z��,�,p,q� = �
L=0

�
�L

�pL−1ZL−1� �p

� + pq
,�,p,q� �80�

with Z−1� �p
�+pq ,� , p ,q�=� / p.

We now obtain the critical line assuming the uniqueness
of the stationary state. In view of Eqs. �74� and �75�, we find
that the normalization constant Z�� ,� , p ,q� converges only
if the hopping ratio q�1. Moreover, using the asymptotic
form �71�, we find that the condition for the model to have
the stationary state is the following, see Fig. 8

�i� for 0�q�
1
3 ,

� � �c =
p�1 − q�

4
, � 

p�1 − q�
2

� � �c = ��1 −
�

p�1 − q�� , � �
p�1 − q�

2
.

�81�

�ii� for 1 / 3 �q�1,

� � �c = �
p�s − q�3 − 2q��

2�1 − q�
, � 

p�s + 2 − q�
2

��1 −
�

p�1 − q�� , � �
p�s + 2 − q�

2
.�

�82�

where s=�q�4−3q�. Note that the critical line �c is just the
solution to

�c = J�� �cp

�c+pq ,�,p,q� . �83�

VI. ALTERNATE MODEL

We introduce here an alternate joined system of the
M/M/1 queueing process and the open TASEP. This new
system consists of a queue part and a TASEP part, see Fig. 9.
Each particle enters the system with rate � and joins the
queue part. The queue part has no spatial structure, and is
characterized by the number of particles N. Each particle
leaves the queue part and enters the TASEP part with rate ��.
After entering the TASEP part, particles follow the same rule
as in the usual open TASEP. This is a model of, for example,
a production line with a material inventory.

The state space of the Markov process encoding the
model is Z�0	 
0,1�L. The master equation governing the
probability P�N ,�1 , . . . ,�L� of finding the configuration
�N ,�1 , . . . ,�L� is

d

dt
P�N,�1, . . . ,�L�

= ��1 − �N0�P�N − 1,�1, . . . ,�L� − �P�N,�1, . . . ,�L�

+ ���1P�N + 1,0,�2, . . . ,1,0, . . . ,�L�

− ���1 − �1�P�N,0,�2, . . . ,1,0, . . . ,�L�

+ p�
j=1

L−1

�� j+1 − � j�P�N,�1, . . . ,� j−11,0,� j+2, . . . ,�L�

+ ��1 − 2�L�P�N,�1, . . . �L−1,1� . �84�

For example, with L=4,

d

dt
P�0,1,1,0,1� = ��P�1,0,1,0,1� + pP�0,1,1,1,0�

− �� + p + ��P�0,1,1,0,1� , �85�

FIG. 8. Critical lines for �a� 0�q�
1
3 and �b� 1

3 �q�1.

FIG. 9. Alternate joined system of the M/M/1 queueing process
and the open TASEP.
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d

dt
P�5,0,1,0,0� = �P�4,0,1,0,0� + pP�5,1,0,0,0�

+ �P�5,0,1,0,1�

− �� + �� + p�P�5,0,1,0,0� . �86�

It is difficult to find an exact stationary state of this model.
One can expect, however, the critical line separating the pa-
rameter space to take the form

� = JL���,�,p� , �87�

Because of the following:
�i� In a stationary state, the current must be �.
�ii� If there is no stationary state and the queue part con-

tinues to grow, the TASEP part can be regarded as the open
TASEP with a particle reservoir in the left end. Thus, the
current must be JL��� ,� , p� in this case.

�iii� These two values should be equal on the critical line.
In fact, the critical lines for L=1,2 ,3 ,4 with ��= p were

calculated �although not rigorously� and found to agree with
Eq. �87� �11�.

VII. CONCLUSION

We have studied an extension of the M/M/1 queueing
process on a semi-infinite chain with the excluded-volume
effect as in the open TASEP. We found that a stationary-state
solution is given by a slightly arranged matrix product form
of the open TASEP and its normalization constant is given by
the generating function of that of the open TASEP. The criti-
cal line which separates the parameter space into the regions
with and without the stationary state is written in terms of the
stationary current of the open TASEP. We also calculated the
average length of the system and the average number of par-
ticles. We also showed the monotonicity of the probability of
the length. These were derived by assuming the uniqueness
of the stationary state. We generalized the model by allowing
particles to hop backward and obtained its critical line. An
alternate joined system of the queueing process and the open

TASEP was introduced. We expect that its critical line can be
also written in terms of the current of the open TASEP.
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APPENDIX: EXAMPLE

The stationary probabilities �25� for some configurations
are listed here,

ZP�1,0� =
�2

p�
, ZP�1,1� =

�2

�2 , ZP�1,0,0� =
�3

p2�
,

ZP�1,0,1� =
�3

p�2 , ZP�1,1,0� =
�3�p + ��

p2�2 ,

ZP�1,1,1� =
�3

�3 , ZP�1,0,0,0� =
�4

p3�
,

ZP�1,0,0,1� =
�4

p2�2 , ZP�1,0,1,0� =
�4�p + ��

p3�2 ,

ZP�1,0,1,1� =
�4

p�3 , ZP�1,1,0,0� =
�4�p + 2��

p3�2 ,

ZP�1,1,0,1� =
�4�p + ��

p2�3 ,

ZP�1,1,1,0� =
�4�p2 + p� + �2�

p3�3 , ZP�1,1,1,1� =
�4

�4 ,

where Z=Z�� ,� , p�. These were calculated by using the
algebraic relation �13�.
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